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Mechanical systems in which moving components are mutually constrained through
contacts often lead to complex contact kinematics involving tangential and normal relative
motions. A friction contact model is proposed to characterize this type of contact
kinematics that imposes both friction non-linearity and intermittent separation
non-linearity on the system. The stick–slip friction phenomenon is analyzed by establishing
analytical criteria that predict the transition between stick, slip, and separation of the
interface. The established analytical transition criteria are particularly important to the
proposed friction contact model for the transition conditions of the contact kinematics are
complicated by the effect of normal load variation and possible interface separation. With
these transition criteria, the induced friction force on the contact plane and the variable
normal load perpendicular to the contact plane can be predicted for any given cyclic relative
motions at the contact interface and hysteresis loops can be produced so as to characterize
the equivalent damping and stiffness of the friction contact. These non-linear damping and
stiffness methods along with the harmonic balance method are then used to predict the
resonant response of a frictionally constrained two-degree-of-freedom oscillator. The
predicted results are compared with those of the time integration method and the damping
effects, the resonant frequency shift, and the jump phenomenon are examined.
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1. INTRODUCTION

When two vibrating bodies are mutually constrained through a friction contact, in the most
general case, the relative motion of the two contacting surfaces is 3-D and can be resolved
into two components: tangential component on the contact plane and normal component
perpendicular to the plane (see Figure 1). The tangential component induces stick–slip
friction, while the normal component causes normal load variation and possible
intermittent separation of the contacting surfaces. The type of contact kinematics can
occur in various mechanical systems, such as shroud contact interfaces of shrouded blade
systems in turbine jet engines [1–3] and automotive clutches [4].

In the 3-D contact kinematics described above, the tangential motion that resides on
the contact plane is 2-D in general; however, this work focuses on a simplified version of
the 3-D contact kinematics, in which the contacting surfaces move with respect to each
other back and forth along a straight line, while the normal component of the relative
motion is retained. This simplified version is of interest because it can be regarded as the
first step towards understanding the general case of contact kinematics.

When experiencing the contact kinematics having tangential and normal relative motion,
the two vibrating bodies often exhibit complex dynamic behaviors due to the influence of
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Figure 1. Contact kinematics.

friction and interface separation. Since both friction and interface separation are inherently
non-linear phenomena, accurate predictions of the dynamic responses of the influenced
structures require characterization of the non-linear contact kinematics with high fidelity.
When the contact kinematics is simple and has negligible normal relative motion, the
response of structures is only affected by the friction non-linearity, which can often be
characterized by a friction interface model assuming constant normal load. This friction
model often leads to a simple hysteresis loop that can be used to establish the damping
and stiffness characteristics of the friction interface. The application of this simple friction
interface model to friction damping design has received significant attention from a
number of researchers [5–11]. On the other hand, when the normal relative motion of two
neighboring structures is large, the structures may experience intermittent separation. This
intermittent separation of the contact interface often gives rise to a non-linear stiffness
characteristic that is amplitude-dependent. The intermittent separation non-linearity has
been examined by a number of researchers under the frictionless condition [12–15]. The
effect of motion-dependent normal load has been summarized by Ferri [16].

In this paper, a friction contact model is proposed to characterize the contact kinematics
that imposes both friction non-linearity and intermittent separation non-linearity on the
constrained structures. The stick–slip friction phenomenon is examined under the
condition of variable contact normal load and interface separation. The contact kinematics
is analyzed by establishing analytical criteria that predict the transition between stick, slip,
and separation of the interface. The established analytical transition criteria are
particularly important to the proposed friction contact model for the transition conditions
of the contact kinematics are complicated by the effect of normal load variation and
possible interface separation. With these transition criteria, the induced friction force on
the contact plane and the variable normal load perpendicular to the contact plane can be
predicted for any given cyclic relative motions at the contact interface and hysteresis loops
can be produced so as to characterize the equivalent damping and stiffness of the friction
contact. The non-linear damping and stiffness along with the harmonic balance method
can be integrated together to obtain a set of non-linear algebraic equations, which can be
solved iteratively for the resonant response [3]. However, the non-linear damping and
stiffness can also be calculated from the friction force histories directly [17, 18]. In this
work, the non-linear damping and stiffness along with the harmonic balance method are
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used to predict the resonant response of a frictionally constrained two-degree-of-freedom
(2DOF) oscillator. The predicted results are compared with those of the time integration
method and the resulting damping effects the resonant frequency shift, and the jump
phenomenon are examined. The application of the contact model to the prediction of the
resonant response of shrouded blade systems and the design of shroud contact was
reported in reference [3].

2. CONTACT INTERFACE MODEL

The contact interface between two vibrating bodies can be modelled as a substructure
that contains a massless elastic element and a friction contact point, as depicted in Figure 2.
The stiffness of the elastic element is characterized by two linear springs, ku and kv , which
account for the shear and normal stiffness properties respectively. The friction contact
point, that is assumed to obey the Coulomb friction law with the friction coefficient m when
in contact with Body 2, can undergo tangential stick–slip motion, and may experience
intermittent separation from Body 2 when the normal relative motion (v) becomes large.
The contact interface is assumed to have either a preload or an initial gap (as designated
by n0). This model allows a negative preload to represent the situation when the interface
has an initial gap; the equivalent preload across the interface with a gap e is calculated
as −kve. In this model, u and v are the input tangential relative motion and normal relative
motion of the contact interface respectively, and they can be evaluated as the motion of
Body 1 with respect to Body 2 (that can be considered as the ground). The slip motion
w is the tangential motion of the contact point relative to Body 2. The variable normal
load n and the induced friction force f can be expressed as

n=6n0 + kvv,
0,

when ve−n0/kv ,
when vQ−n0/kv,

(1)

Figure 2. Contact interface model.
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f= ku (u−w). (2)

It is noted that the normal load variation is proportional to the normal relative motion
when the two bodies remain in contact.

2.1. , ,  

When the vibratory motion is small, the contact surface sticks and the friction force is
proportional to the tangential relative motion u with reference to w, which is zero. Its
magnitude is always limited by the slip load 2mn. During the course of vibration, the
interface may reach a point where the friction force tends to exceed the positive slip load
mn, and the contact surface starts to slip towards the positive u direction. Subsequently,
the friction force remains equal to the varying slip load until the contact surface sticks
again. Here, it should be pointed out that the moment when the interface changes back
to the stick state does not correspond to when the tangential relative motion u reverses
its direction. The reason is that the transition from slip to stick depends on the tangential
relative motion u as well as the variable normal load, and in the process the normal load
may decrease to reduce the slip load so that the occurrence of the transition can be
postponed to some instant after the reversion of the motion u. When the interface moves
towards the negative u direction, the interface repeats the process in the opposite direction.
During the cycle of motion, the contact normal load may vanish and cause the interface
to separate; consequently, the friction force is not present.

2.2.    

Depending on the initial condition of the contact interface, the intermittent separation
due to large normal relative motion can have two different types. When the interface is
preloaded, small normal relative motion does not cause any separation but keeps the
interface remaining in contact throughout the motion. As the amplitude of the normal
relative motion increases, the temporary separation of the interface occurs when the
motion approaches one of its extremes. On the other hand, when the interface has an initial
gap, small normal relative motion does not cause any contact in the interface, resulting
in a situation of fully separation throughout the motion. The increase in the amplitude
of the normal relative motion causes the fully separation to be interrupted for some portion
of the cyclic motion. It is evident that these two different types of intermittent separation
can lead to different non-linear stiffness characteristics.

3. STICK–SLIP ANALYSIS

The simplest friction interface model is the one having constant normal load, as depicted
in Figure 3, in which one of the two contact bodies is assumed to be the ground. When
the interface is subjected to cyclic relative motion (say u=A cos u, u=vt), it undergoes
alternating stick–slip motion, and the resulting hysteresis loop consists of two symmetric
stick regions and two symmetric slip regions, also shown in Figure 3 [8]. For an interface
experiencing in-phase variable normal load,† as demonstrated by Menq et al. [2], the
resulting hysteresis loop is shown in Figure 4, in which the slip regions become inclined
lines because of the in-phase variable normal load that is taken as the sum of the preload,
n0, plus a term proportional to the tangential relative motion. In both hysteresis loops,
the stick–slip transitions can be easily predicted. In particular, the slip-to-stick transitions

† The friction interface model assuming in-phase variable normal load is a special case of the interface model
shown in Figure 2, in which the normal relative motion that causes the normal load variation is in phase with
the tangential relative motion.
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Figure 3. Hysteresis loop of an interface experiencing constant normal load: (a) friction interface model,
(b) hysteresis loop.

always occur at the instant when the relative motion reverses its direction (u=0° or
u=180°).

On the other hand, when an interface experiences variable normal load whose variation
has an arbitrary phase angle from the tangential relative motion, it becomes more difficult
to predict the stick–slip transition. This is because the transition depends on not only
tangential relative motion but also normal load variation. For example, the slip-to-stick
transition may not occur when tangential relative motion reverses its direction; instead,
variable normal load may decrease to keep the interface remaining slipping. To illustrate
the complex friction phenomenon caused by normal load variation, one typical example
of the hysteresis loop is shown in Figure 5. The hysteresis loop also consists of four
alternating stick and slip regions, but it is more complicated than those of the case of
constant normal load or of in-phase variable normal load. As can be seen in this complex
hysteresis loop, the two slip-to-stick transitions do not occur at the moment of motion
reversion that coresponds to u=0° or u=180°. One transition takes place at some instant
after the motion reverses its direction (u1 =22·9°), and the other transtion takes place at
some instant before the motion reverses its direction (u3 =159·7°).

Figure 4. Hysteresis loop of an interface experiencing in-phase variable normal load: (a) friction interface
model; (b) hysteresis loop. u1 = cos−1[(−2mn0/kdA− mg+1)/(1− mg)], u2 = cos−1[(2mn0/kdA− mg−1)/(1− mg)].
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Figure 5. Typical hysteresis loop of an interface experiencing variable normal load: (a) friction interface model,
(b) hysteresis loop.

In the following sections, the stick–slip analysis of a friction interface experiencing
variable normal load will be presented. Using the proposed model shown in Figure 2,
analytical criteria are developed to predict the transitions between various states of the
interface (stick, slip, and separation). With the transitions established, the hysteresis loop
can be extablished to characterize the stiffness and damping of the interface.

3.1. – 

To establish the transition criteria, the stick–slip condition must first be addressed in
an analytical form. In other words, the friction force f and the slip velocity ẇ that
characterize the stick–slip condition must be formulated in terms of the input relative
motion. These two quantities are referred to as the stick–slip characteristics of the friction
interface. With these stick–slip characteristics determined, the criteria can then be
established in terms of the input relative motion.

When the interface sticks, ẇ =0, and from equation (2) the friction force can be given
in the form

f= ku (u− u0)+ f0, (3)

where u0 and f0 are the initial values of u and f at the beginning of the stick state.
When the positive slip occurs, the contact surface moves towards the positive direction;

that is, ẇq 0. In this state, the friction force is equal to the positive slip load:

f= mn. (4)

Considering equation (1), it becomes

f= mn0 + mkvv. (5)

The slip velocity ẇ can be found in terms of the input relative motion by differentiating
equations (1), (2) and (5) with respect to time and rearranging them:

ẇ= u̇−
mkv

ku
v̇. (6)

Similarly, one can conclude the stick–slip characteristics for the negative slip state (when
the contact surface moves towards the negative direction) as follows:

f=−(mn0 + mkvv), ẇ= u̇+
mkv

ku
v̇. (7, 8)
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3.2.  

As indicated, the interface will be in one of the four distinct states: stick, positive slip,
negative slip, and separation.

3.2.1. Stick state
When the interface sticks, the transitions to slip states occur when the friction force

reaches the slip load:

positive slip: f− mn=0, f� − mṅq 0; (9)

negative slip: f+ mn=0, f� + mṅQ 0. (10)

The inequalities guarantee the slip conditions to be satisfied. Using equations (1) and (3),
the above stick-to-slip transition criteria become

positive slip: kuu− mkvv+( f0 − mn0 − kuu0)=0, kuu̇− mkvv̇q 0; (11)

negative slip: kuu+ mkvv+( f0 + mn0 − kuu0)=0, kuu̇+ mkvv̇Q 0. (12)

As for the stick-to-separation transition, it occurs when the normal load vanishes.
Besides, the normal load must be decreasing at this moment to guarantee the occurrence
of the separation. In other words, the criterion can be expressed as n=0 and ṅQ 0. Using
equation (1), it becomes

n0 + kvv=0, v̇Q 0. (13)

3.2.2. Positive slip state
Since the positive slip state cannot be followed by the negative slip state, only two

transitions are possible. The transition to the stick state can be inferred from ẇ =0 and
ẅQ 0; the latter one is required to ensure that the contact surface has a tendency towards
the negative direction when it reaches the extreme. Using equation (6), these conditions
imply

u̇−
mkv

ku
v̇=0, ü−

mkv

ku
v̈Q 0. (14)

It can be clearly seen that this slip-to-stick transition depends on the tangential relative
motion and the normal relative motion (thus the normal load variation) as well. However,
for the simplified case of the constant normal load (v̇=0) and of the in-phase variable
normal load (v̇Au̇), the transition criterion becomes u̇=0, that is, when the motion u
reverses its direction.

Since the occurrence of the separation state only depends on the variable normal load,
the criterion for the transition from the positive slip state to the separation state is the same
as the criterion given by equation (13).

3.2.3. Negative slip state
A similar procedure to that for the case of the positive slip can be used in this case. The

transition to the stick state occurs when ẇ=0 and ẅq 0, namely

u̇+
mkv

ku
v̇=0, ü+

mkv

ku
v̈q 0. (15)

The transition to the separation state occurs when the criterion given by equation (13) is
met.
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3.2.4. Separation state
The separation of the interface ends when the normal load is about to develop, and hence

the moment of this transition can be determined by n=0 and ṅq 0. Using equation (1),
the criterion becomes

n0 + kvv=0, v̇q 0. (16)

In addition to this transition moment, the state that follows the separation state has to
be further determined. The stick–slip characteristics as shown in the previous section can
be used to serve this purpose.

When the normal load and the friction force begin to develop at the end of the
separation, from equations (1) and (2) their rates of change at this moment can be
expressed as

ṅ= kvv̇, f� = ku (u̇− ẇ). (17, 18)

If the interface becomes stuck after the separation, considering the stick–slip characteristics
in the stick state, the following conditions must be satisfied:

−mṅQ f� Q mṅ and ẇ =0. (19)

Then, considering equations (17) and (18), these conditions become

−mkv

ku
v̇Q u̇Q mkv

ku
v̇. (20)

Using similar arguments, one can conclude the condition for the coming positive slip
state:

u̇q mkv

ku
v̇, (21)

and the condition for the coming negative slip state:

u̇Q−
mkv

ku
v̇. (22)

3.3.     

The above transition criteria are obtained without any assumption on the input relative
motion; thus, it is true for any prescribed relative motion of the interface. However, when
considering cyclic motion, these transition criteria can be used to derive the transition
angles during a cycle of motion. Assume the cyclic motion to be sinusoidal, namely

u= a sin u, v= b sin (u+f), (23, 24)

where u=vt, in which v is the oscillating frequency and t is the time. The interface may
experience, during a cycle of motion, a sequence of states; as a result, the hysteresis loop
is segmented into the corresponding stick, positive slip, negative slip, and separation
regions. Applying the criteria described in the preceding section, eight transition angles†
can be formulated to characterize the possible transitions from one state to another during
a cycle of motion. In the following discussion, the symbol E denotes the stick state, the
symbol N the negative slip state, the symbol P the positive state, and the symbol S the
separation state. The transition angle can be represented by sublu

sup
subr

, where the superscript

† For cyclic motion, the angle can be used to represent the dimensionless time, vt. Since the damping and
stiffness characteristics of a friction interface is independent of the frequency of the motion, the transition angle
can be useful in this investigation.
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represents the current state, the right subscript (subr ) the following state, the left subscript
(subl ) the previous state.

The eight transition angles are listed as follows. NuE
P : Transition angle from the stick state

to the positive slip state; the stick state follows the negative slip state. Pu
E
N : Transition angle

from the stick state to the negative slip state; the stick state follows the positive slip state.
Su

E
P : Transition angle from the stick state to the positive slip state; the stick state follows

the separation state. Su
E
N : Transition angle from the stick state to the negative slip state;

the stick state follows the separation state. u*S : Transition angle from the stick, positive
slip, or negative slip state to the separation state. uS

*
: Transition angle from the separation

state to the stick, positive slip, or negative slip state. uP
E : Transition angle from the positive

state to the stick state. uN
E : Transition angle from the negative state to the stick state.

The formulas of these transition angles are given in the Appendix. From the formulas,
it is clear that the first four transition angles are dependent on the previous state. However,
the last four angles are independent of the previous state, and thus, the left subscript is
neglected. It is noted that the interface separates during the period from u*S to uS

*
. These

transition angles are expressed in terms of three dimensionless variables, namely
n̄0 = mn0/kua, b�= mkvb/kua, and f, and can be calculated in advance so as to construct the
sequence of stick/slip/separation regions. Once the sequence of stick/slip/separation
regions is known, the hysteresis loop can be established.

3.4.  

It is found that there are 12 possible sequences of stick/slip/separation regions due to
sinusoidal motion. They can be further categorized into three cases: no slip, slip but no
separation, separation.

3.4.1. No-slip case
When the interface is held by the preload and the input relative motion is small, the

interface sticks all the time. This case containing only the stick region occurs when

n̄0 q
z1+ b�2 −2b� cos f+z1+ b�2 +2b� cos f

2
. (25)

This range of n0 can be obtained by considering the condition that makes NuE
P and Pu

E
N

non-existent, whose formulations can be found in the Appendix. Since the interface always
sticks, it cannot contribute any damping to the system. Therefore, the relative motion and
the induced friction force do not form a hysteresis loop.

3.4.2. Slip-but-no-separation case
When the amplitude of the relative motion increases to some extent, the interface begins

to slip but still remains in contact. In this situation, the interface undergoes alternating
stick–slip motion, which results in a hysteresis loop consisting of four alternating stick and
slip regions separated by four transition angles, in the following order:

uP
E :

E

Pu
E
N:

N

uN
E4

E

Pu
E
N:

P

uP
E .

Above the arrows are the corresponding regions between the two transition angles. This
case occurs when

z1+ b�2 −2b� cos f+z1+ b�2 +2b� cos f

2
q n̄0 q b�. (26)
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It is apparent that the shape of the resulting hysteresis loop changes as the phase angle
(f) between u and v changes. This variation with changing the phase angle is depicted in
Figure 6, in which ku = kv =1, m=0·4, n0 =1·2, a= b=1, and the phase angle for each
loop is shown alongside.

Since the analytical transition criteria are developed for the general variable normal load
case, they can also be applied to its simplified cases of constant normal load and in-phase
variable normal load. This can be illustrated by the resulting hysteresis loop shown in
Figure 6 for the in-phase variable normal load case (f=0°). It is apparent that this
hysteresis loop is so simple that these transitions can be easily determined, even without
the help of the developed transition criteria. For example, the slip-to-stick transitions (uP

E

and uN
E ) occur as the motion reverses the direction. However, when the phase angle is

present, the slip-to-stick transitions do not take place at the moment of motion reversion.

3.4.3. Separation case
When the normal relative motion becomes larger and larger, the interface that is initially

held by a preload will separate for a while during a cycle of motion. On the other hand,
when the interface has an initial gap and is subjected to a sufficiently large normal relative
motion, the gap will be closed for a portion of the cycle. There exist 10 possible sequences
of stick/slip/separation regions and they are listed in Figure 7. This tree-type scheme starts
from the separation region, after which a three-way branch indicates the possibility of the
stick, positive slip, or negative slip region. The decision can be made based on the criteria
given by equations (20)–(22). In addition to this particular branch, there are seven two-way
branches whose decisions have to be made between two transition angles. For example,
the positive slip region that follows the separation region may change to the stick region

Figure 6. Variation in hysteresis loop (slip-but-no-separation).
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Figure 7. Ten possible sequences of regions in the separation case.

at the transition angle uP
E or back to the separation region at the transition angle u*S . Since

the transition angles are calculated in advance, the decision can be made based on which
angle is first encountered.

The occurrence of the intermittent separation complicates the stick–slip friction
phenomenon, and thus, the resulting hysteresis loop becomes complex. In addition, the
shape of the hysteresis loop may have significant variation due to the phase angle. This
variation is depicted in Figure 8, in which the interface parameters and the relative motion
are the same as those in the slip-but-no-separation case, except n0 =0·8.

4. NON-LINEAR STIFFNESS AND DAMPING CHARACTERISTICS

Once the hysteresis loop of the friction contact interface is established by applying the
stick–slip analysis discussed above, Fourier series expansion can be used to lump the
induced friction force into the equivalent stiffness and damping terms. These lumping
effects along with the effect of the intermittent separation caused by normal relative motion
can be integrated with the harmonic balance method to predict the forced response of
frictionally constrained structures.

4.1.  

For input harmonic relative motion, as expressed in equations (23) and (24), the induced
periodic friction force can be approximated by

f(u)1 kua(Fb (n̄0, b�, f)+Fs (n̄0, b�, f) sin u+Fc (n̄0, b�, f) cos u), (27)
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Figure 8. Variation in hysteresis loop (separation).

where Fb , Fs , and Fc are the three non-dimensionalized Fourier coefficients, and they are
the functions of the three dimensionless variables, n̄0 = mn0/kua, b�= mkvb/kua, and f.
These three Fourier coefficients represent three important components of the induced
friction force. The time invariant component, kuaFb , is important for it can result in static
deflection of the constrained structures, and when dealing with complex structures, such
as shrouded blades, the static deflection may cause an additional component of the contact
preload, which can alter the induced friction force. The second term, kuaFs , represents the
component of the friction force that is in phase with the tangential motion, therefore, Fs

is the non-dimensionalized equivalent stiffness of the friction contact on the contact plane.
On the other hand, Fc is related to the equivalent damping of the friction contact on the
contact plane, because kuaFc represents the component of the friction force that is out of
phase by 90° with the tangential motion. The estimation of the stiffness and damping of
the friction force using Fourier series expansion can be illustrated by Figure 9.

Figure 9. Estimation of stiffness and damping using Fourier series expansion.
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Figure 10. Non-dimensionalized stiffness and damping (f=0°): (a) stiffness Fs , (b) damping Fc .

By assigning a value to the phase angle (f), these dimensionless Fourier coefficients will
be functions of n̄0 and b�, which can be visualized as 3-D surfaces. Figure 10 depicts the
two Fourier coefficients, Fs and Fc , for the case having f=0°. This is the in-phase case,
which was studied by Menq et al. [2]. The boundary curves corresponding to b�=0 in the
two graphs are the results for the case having constant normal load, which was studied
by a number of researchers [5, 8, 9]. It is interesting to note that, for the case of f=0°,
the damping Fc is zero for the range of b�q 1. This is because the interface either separates
or sticks during a cycle of motion, and thus, the hysteresis loop does not exist. The stick
condition after separation can be inferred from equation (20). However, this is not the case
when the phase angle f exists. As shown in Figure 11, one can observe significant damping
for the range of b�q 1. This indicates that the phase angle can have profound influence
on the damping characteristic of the interface.
When a contact interface is subjected to large cyclic normal relative motion, the contact
surfaces may separate intermittently. For the model shown in Figure 2, the variable contact
normal load caused by harmonic normal relative motion, say v= b sin u, can be
expressed as

n=6n0 + kvb sin u,
0,

when sin ue−n0/kvb,
when sin uQ−n0/kvb.

(28)

Since the variable normal load cannot contribute damping to systems, it must be in phase
with the input normal relative motion and may be approximated by truncating the
superharmonic terms in its Fourier series:

n1 kvb(Nb (n*0 )+Ns (n*0 ) sin u), (29)
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where n*0 is the non-dimensionalized preload/gap, n0/kvb, and Nb and Ns are the
non-dimensionalized Fourier coefficients of the time invariant term and the first
fundamental terms, respectively. The time invariant component arises from the asymmetric
nature of the intermittent separation, and it is important when the dynamic behavior of
the constrained structure is examined. This is because the time invariant term alters the
preload (or initial gap) of the contact interface and thus alters the response of the structure
as well. Using the standard integral formula for the Fourier coefficient, the dimensionless
functions Nb and Ns can be derived:

Nb (n*0 )= 80,
n*0 ,
(sin u1 + n*0 u1)/p,

n*0 Q−1,
n*0 q 1,
=n*0 =E 1;

(30)

Ns (n*0 )= 80,
1
(n*0 sin u1 + u1)/p,

n*0 Q−1,
n*0 q 1,
=n*0 =E 1;

(31)

in which u1 = cos−1(−n*0 ).

Figure 11. Non-dimensionalized damping: (a) f=15°, (b) f=30°.



2.0

0.5

0.0
–1 2

n0 = n0/kvb 

1.0

1.5

0 1–2

*

  475

Figure 12. Non-dimensionalized Fourier coefficients of variable normal load: ––, Nb ; ---, Ns .

It is interesting to note that, depending on the initial interface condition, the non-linear
stiffness nature, that is characterized by Ns , varies. This non-dimensionalized stiffness is
illustrated in Figure 12. When the interface has preload and the relative normal motion
is small such that n*0 q 1, the contact interface does not separate throughout the motion
and the non-dimensionalized stiffness is unity. As the relative normal motion becomes
larger such that n*0 Q 1, the non-dimensionalized stiffness decreases and approaches 0·5,
showing a ‘‘softening spring’’ characteristic.

For the case of having an initial gap, the contact interface does not exhibit any stiffness
when the relative normal motion is small such that n*0 Q−1. This is because the gap never
closes during a cycle of motion. As the relative normal motion becomes larger such that
n*0 q−1, the non-dimensionalized stiffness increases and approaches to 0·5, showing a
‘‘hardening spring’’ characteristic.

4.3. - 

The forced response of a two-degree-of-freedom oscillator under the contact constraint
was investigated by the authors using the harmonic balance method in conjunction with
the developed contact interface model [3]. Instead of using the conventional
mass–spring–dashpot notation, this system can be described by its two-mode modal
information that includes modal masses, m1 =1·0, m2 =1·0; modal frequencies, vn1 =1·0,
vn2 =10·0; modal damping ratio, z1 =0·01, z2 =0·01; and mode shapes,
F1 = [0·707 0·707]T, F2 = [1·0 −0·5]T. As for the friction contact, the friction coefficient
m is 0·4, the shear stiffness ku is 1·0, and the normal stiffness kv is 1·0. Also, the external
harmonic excitation can be broken into fu , fu =1·0, in shear direction, and fv , fv =1·0, in
normal direction. The typical forced responses under various levels of preload are shown
in Figure 13, in which the peak resonances are located within those of two lightly damped
responses. The one for the fully separate case is the response of the oscillator without any
influence of the interface, and the one for the fully stuck case is the response when the
interface is totally locked up. Both are linear cases, but in between the problem becomes
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non-linear due to the occurrence of friction slip and intermittent separation. In the figure,
the discrete data points denote the results by the time integration method and they are
used to verify the accuracy of the proposed approach. As expected, the damped resonant
response, the resonant frequency shift, and the jump phenomenon are observed as the
result of the coupling effect of these two non-linearities. The optimal preload n0 =10,
which gives the minimum response, has an important implication to the design of friction
contact in that it gives the most effective design when using the friction interface to
attenuate the resonant response.

4.4.  

It is well known that the softening and hardening spring effects can lead to a jump
phenomenon that indicates the possibility of multiple states in the response of the system
within some frequency range. In Figure 13, for the case when the interface has a moderate
initial gap (n0 =−20), the contact of the two surfaces imposes a hardening spring effect
on the structure to cause the resonance peak of the response to bend towards higher
frequencies. On the other hand, for the case when the moderate preload is applied to the
interface (n0 =5), the increase in the amplitude of the motion causes the preloaded
interface to separate temporarily. The overall effect of the temporary separation is a

Figure 13. Forced responses of a two-degree-of-freedom oscillator: ––, harmonic balance method. Discrete
data, time integration method, n0 values as follows: E, q90; T, 50; R, 20; W, 10; Q, 5; r, 2; G, 0; g, −5;
w, −20; q, Q−50.
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Figure 14. Response of the oscillator at n0 =5; ––, harmonic balance method; q, time integration method;
. . . . . , unstable solutions.

softening spring effect that gives rise to the non-linear response with a resonance peak
bending towards lower frequencies.

To further examine the jump phenomenon, the direct time integration method is
employed for the case of n0 =5 and the result is shown in Figure 14. For comparison, the
solution from the harmonic balance method is also plotted in this figure. A slight
discrepancy between these two solutions near the resonance can be observed. This is mainly
due to the dissimilar effects of stick–slip friction and intermittent separation on the
response of the oscillator that cause the assumption of the harmonic balance method
regarding the harmonic nature of the motion to be not entirely accurate [19].

It should also be noted that one of the multiple solutions from the harmonic balance
method shown as the dashed curve is unstable [20]; separated by the unstable response,
the stable response consists of two curves, referred to as the upper and lower branches.
The multiple solutions from the time integration method can be obtained by using different
initial conditions; however, the unstable solutions cannot be reached because they are
unstable. From the time integration solutions, the multi-valued response exists between
1·195 and 1·235 rad/s.

The ‘‘jumping’’ behavior can be clearly seen using the time integration simulation with
frequency sweeping across the jump. The simulation starts from the frequency 1·195 rad/s
for 100 cycles (phase I), is then perturbed to 1·190 rad/s for 120 cycles (phase II), and finally
is perturbed back to 1·195 rad/s for 30 cycles (phase III). The result is shown in Figure 15.
With the selected initial condition, the displacement at the end of phase I reaches the steady
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Figure 15. Time simulation of jump phenomenon.

state amplitude at the upper branch. In phase II, the steady state amplitude is reached after
a transient period and jumps from the upper branch to the lower branch. In phase III,
while the frequency is perturbed back to that of phase I, the steady state amplitude still
stays in the lower branch.

5. CONCLUSIONS

A friction contact model has been proposed to characterize the contact kinematics that
imposes both friction non-linearity and intermittent separation non-linearity on the
constrained structures. In the stick–slip analysis, this interface model takes into account
the variable normal load and possible interface separation caused by the normal relative
motion. These effects can lead to a complex contact kinematics, in which the determination
of the transition between various states of the interface (stick, slip, and separation) is not
straightforward. In this study, the contact kinematics is analyzed by establishing analytical
criteria that predict the transition between stick, slip, and separation of the interface. With
these transition criteria, the induced friction force on the contact plane and the variable
normal load perpendicular to the contact plane can be predicted for any given cyclic
relative motions at the contact interface and hysteresis loops can be produced so as to
characterize the equivalent damping and stiffness of the friction contact. The non-linear
damping and stiffness along with the harmonic balance method are then used to predict
the resonant response of a frictionally constrained two-degree-of-freedom oscillator. The
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predicted results are compared with those of the time integration method and the resulting
damping effect, the resonant frequency shift, and the jump phenomenon are examined.

Two types of intermittent separation of the interface caused by large normal relative
motion were discussed. The first type occurs when the preloaded interface is subjected to
large normal relative motion that causes the contact surfaces to separate temporarily
during each cycle of motion. This type of intermittent separation can impose a softening
spring effect on constrained structures. The second type of intermittent separation occurs
when the normal relative motion becomes large and causes the interface having an initial
gap to close for some portion of each cycle of motion. The effect of this type of intermittent
separation is similar to the effect of a hardening spring.

The softening and hardening spring effects can lead to two stable frequency responses
over some frequency range that cause the frequency response of the structure to have a
jump phenomenon. The jumping behavior of the oscillator was studied using the time
integration simulation with frequency sweeping across the jump. It was found that small
perturbation in the excitation frequency near the jump of the response may cause the
response to ‘‘jump’’ from one stable state to the other.
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APPENDIX: TRANSITION ANGLES OF SINUSOIDAL MOTION

For the sinusoidal relative motion defined in equations (22) and (23), the induced
variable normal load can be described as

n=6n0 + kvb sin (u+f),
0,

when sin (u+f)e−n0/kvb,
when sin (u+f)Q−n0/kvb.

(A1)

The transition angles at which the change of the state takes place can be derived according
to the transition criteria developed in section 3.2. These transition angles will be expressed
in terms of three dimensionless variables, namely n̄0 = mn0/kua, b�= mkvb/kua, and f.

According to the criteria given by equations (13) and (16), u*S and uS

*
can be derived:

u*S = u*S (n̄0, b�, f)= p−f+sin−1(n̄0/b�), uS

*
= uS

*
(n̄0, b�, f)=−f−sin−1(n̄0/b�).

(A2, A3)

According to the criteria given by equations (14) and (15), the transition angles uP
E and

uN
E can be derived:

uP
E = uP

E (b�, f)= p−tan−101− b� cos f

b� sin f 1 , uN
E = uN

E (b�, )= p+tan−101+ b� cos f

b� sin f 1 .

(A4, A5)

From equation (6), the friction force of the stick region from uN
E to NuE

P can be expressed
as

f= ku (u− u(uN
E ))+ f(uN

E ). (A6)
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Since f(uN
E )=−mn(uN

E ), using equations (23) and (A1), equation (A6) becomes

f= kua(sin u−sin uN
E )− m(n0 + kvb sin (uN

E +f)). (A7)

Then, solving the criterion given by equation (11) for u and substituting equation (A5) into
the solution yield NuE

P :

NuE
P =cos−10l2 −2n̄0

l1 1−tan−101− b� cos f

b� sin f 1 , (A8)

where l1 and l2 are defined as

l1 =z1+ b�2 −2b� cos f, l2 =z1+ b�2 +2b� cos f. (A9)

Using equation (A4), equation (A8) can be simplified:

NuE
P = NuE

P (n̄0, b�, f)= p+ uP
E +cos−10l2 − n̄0

l1 1 . (A10)

Similar procedures can be applied to obtain Su
E
P by considering the same criterion given

by equation (11), and Pu
E
N and Su

E
N by considering the criterion given by equation (12):

Su
E
P = Su

E
P (n̄0, b�, f)= p+ uP

E +cos−10−sin uS

*
− n̄0

l1 1 , (A11)

Pu
E
N = Pu

E
N (n̄0, b�, f)= p+ uN

E +cos−10l1 −2n̄0

l2 1 , (A12)

Su
E
N = Su

E
N (n̄0, b�, f)= p+ uN

E +cos−10sin uS

*
− n̄0

l2 1 . (A13)


